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ABSTRACT 

In this  paper  we give a conformal  classification of all eucl idean subman i -  

folds carrying a parallel pr incipal  cu rva tu re  no rma l  under  the  intrinsic 

addi t ional  a s s u m p t i o n  tha t  the  associa ted  conformal  conullity is involu- 

t ive and  the  leaves are extr insic  spheres  in the  submani fo ld  in the  sense 

of Nomizu.  We also provide several  appl icat ions of this  result .  

I n t r o d u c t i o n  
Let f :  M n --4 R N be an isometric immersion of a riemannian manifold into 

euclidean space. A normal vector field ~ to f is called a p r i n c i p a l  c u r v a t u r e  

n o r m a l  of f if ~(x) is a principal curvature normal at any x C M ~, i.e., the 

c o n f o r m a l  nu l l i t y  subspace En(x ) C TzM associated to 7/, given by 

En(x) = {T • T~M: al(T, X) = (T, Z)~h for all X • T~M}, 

is at least one-dimensional. Here a f :  T M  × T M  ~ T]-M stands for the second 

fundamental form of f with values in the normal bundle. If, in addition, E n has 
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constant dimension q everywhere, then ~ is said to be p r o p e r  o f  mu l t i p l i c i t y  q. 

We call a proper principal curvature normal ~? pa ra l l e l  when it is parallel in the 

normal connection of ] along Ca. It is well known that the parallelism condition 

is automatic for multiplicity q > 2 (cf. [Re] or Proposition 8 below). Moreover, it 

is a standard fact that if ~? is a nonvanishing parallel principal curvature normal 

of multiplicity q, then Eu is an involutive distribution whose leaves are round 

q-dimensional spheres in R N. For hypersurfaces, admitting a parallel principal 

curvature normal reduces to having a principal curvature of constant multiplicity 

which is constant along the leaves of the corresponding eigenbundle. 

Isometric immersions f :  M n --+ R N carrying principal curvature normals arise 

in several different geometric situations. For instance, it is a well-known fact (see 

[Re]) that f has a flat normal bundle at x E M '~ if and only if there exist principal 

curvature normals ~1 , . . . ,  ~J~ at x such that  the tangent space T~M decomposes 

as an orthogonal direct sum of Ca1,. . . ,  Cv~. Another important example occurs 

when M n is conformally flat, n _> 4 and N ~ 2n - 3. In this case, it was shown in 

[Mo] that there is an open dense subset of M ~ so that each connected component 

carries a proper principal curvature normal of multiplicity at least 2n - N. For 

other geometric conditions implying the existence of principal curvature normals 

we refer to [Ca], [CD], [AD], [DF] and [DT]. 

In this paper we classify euclidean submanifolds carrying a parallel principal 

curvature normal y under the intrinsic additional assumption that the (con-  

fo rma l )  conu l l i t y  E~ associated to 7j is involutive and the leaves are extrinsic 

spheres in M ~ in the sense of Nomizu ([Nm]). Our classification is conformal in 

nature, i.e., up to conformal transformations of the ambient space R N. A result 

due to Nolker ([No]) implies that the submanifold is rotational under the stronger 

hypothesis that the conullity is totally geodesic in the manifold. 

Our result implies Cecil's local conformal classification of the Cyclides of 

Dupin, cf. [Cel] or [Ce2]. In fact, it improves Cecil's result in that,  for hyper- 

surfaces with a principal curvature of multiplicity n - 1 (which are precisely the 

conforma]ly flat hypersurfaces when n > 4), we only require the curvature lines 

corresponding to the principal curvature of multiplicity one to be circles in M n, 

that  is, one-dimensional extrinsic spheres. Moreover, in contrast to Cecil's proof, 

which is based on Pinkall's local Lie geometric classification of the Cyclides of 

Dupin (cf. [Pi]) and thus uses the framework of Lie sphere geometry, ours is 

entirely done within euclidean geometry. 

Among other applications, we show that a "generic" conformally flat euclidean 

submanifold in codimension two with nowhere flat normal bundle and integrable 
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conullity £,J- must be rotational. Here, ~ is the principal curvature normal given 

by the aforementioned result in [Mo]. We also give a complete description of 

the profiles of conformally fiat rotational submanifolds of arbitrary codimension. 

Another application of our main result is a classification of the three-dimensional 

conformally fiat hypersurfaces of euclidean space with three distinct principal 

curvatures whose curvature lines of one family are segments of circles or straight 

lines. 

§1. T h e  r e su l t s  

A smooth distr ibution/1/on an n-dimensional riemannian manifold M '~ is said 

to be t o t a l l y  umbi l i ca l  if there exists a vector field 5 in/4 ± such that 

v h s  -- (T, S)5, for all T, S 6/4,  

where we write Z = Z"  + Z h according to the decomposition T M  = / 4  G/4±.  In 

this case, 5 is called the m e a n  c u r v a t u r e  of/4.  If 5 vanishes identically, then 

/4 is said to be t o t a l l y  geodesic .  The distribution is called sphe r i ca l  if it is 

totally umbilical and its mean curvature 6 satisfies 

VhT 5 = 0 ,  for a l l T 6 / 4 .  

I f /4  is totally geodesic, totally umbilical or spherical, then it is involutive and 

the leaves are, respectively, totally geodesic, totally umbilical or extrinsic spheres 
in M n. 

THEOREM 1: Let  f :  M n -+ R N be an isometr ic  immers ion  wi th  a parallel prin- 

cipal curvature  normal  ~) o f  mul t ip l ic i ty  q such that  the  conul l i ty  £ ~  is to tal ly  

umbilical on M n. I f  q -- n - 1, assume fur ther  that  the integral curves o f  the 

conull i ty  are circles in M n. Then f ( M  n) is conformal ly  congruent  to an open 

subset  o f  one o f  the  following: 

(i) a product  M '~-q x Rq, where M '~-q is a submani fo ld  o f  W v -q ,  

(ii) a product  C M  n-q  x R q - l ,  where C M  " - q  C R N-q+1 is the cone over a 

submani fo ld  M n-q  o f  the sphere S N-q  C W v-q+x, 

(iii) a rotat ional  submani fo ld  over a submani fo ld  M '~-q o f  R N - q .  

Moreover,  f has fiat normal  bundle i f  and only  i f  the  same  holds for M '~-q. 

Recall that the r o t a t i o n a l  s u b m a n i f o l d  N "  of R N over M ~-q with axis  

R w-q-1 is the n-dimensional submanifold generated by the orbits of the points of 

M n-q  under the action of S 0 ( q +  1). Here M n-q  C R lv-q C R N is a submanifold 

disjoint from the subspace R w-q-1 C R N-q  and S0(q + 1) denotes the subgroup 
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of SO(N) which keeps R N-q-1 pointwise fixed. Notice that  the hypothesis of the 

theorem for q = 1 is equivalent to assuming that  the integral curves of £7 are 

segments of circles or straight lines in R g ;  cf. Proposition 8. 

A hypersurface f :  M '~ ~ R n+l is called a C y c l i d e  o f  D u p i n  of characteristic 

(q, n - q) if it has everywhere only two principal curvatures of multiplicities q and 

n - q, respectively, which are constant along the correspondent eigenbundles; cf. 

[Pi]. It  follows from Theorem 1 that  any Cyclide of Dupin is conformally equiva- 

lent to a hypersurface of one of the three types in Theorem 1, where M n-q is an 

(n - q)-dimensional sphere. This is Cecil's result referred to in the introduction. 

In the case where q = n - 2 in Theorem 1, we can replace the assumption on 

$~  by the weaker hypothesis that  it is simply integrable if we impose on f the 

further restriction of having nowhere flat normal bundle, that  is, not having flat 

normal bundle on any open subset. 

COROLLARY 2: Let f: M n ~ ~N, n >_ 4, be an isometric immersion with 

nowhere fiat normal bundle carrying a proper principal curvature normal ~1 of 

multiplicity n - 2  with integrable conullity. Then f ( M n) is conformally congruent 

to an open subset of a submanifold of type (i), (ii) or (iii) in Theorem 1 with 

nowhere fiat normal bundle. 

Next, we consider isometric immersions of conformally flat manifolds. We star t  

with a general result for immersions with flat normal bundle. 

PROPOSITION 3: Let f: M n --4 R N be an isometric immersion of a conformally 

fiat manifold with //at normal bundle and a constant number of proper prin- 

cipal curvature normals ~1, . . . ,  ~R. Then, the conullity £~  is integrable i f  the 

multiplicity of £nk is at least 2. 

We call an isometric immersion f :  M '~ -+ R N, n >_ 4 and N <_ 2n - 3, 

of a conformally flat manifold gene r i c  if £n assumes everywhere its possible 

minimum dimension 2n - N. Here 7/ is the principal curvature normal of f 

given by Moore's result referred to in the introduction. By Proposition 3, the 

class of generic conformally flat submanifolds for which the conullity is integrable 

contains the class of generic conformally flat submanifolds with flat normal bundle 

satisfying the regularity assumption in the statement.  The next result shows that  

for N = n + 2 there is only one class of examples that  belong to the former class 

but not to the latter. 

COROLLARY 4: Let f: M n --~ ]R n+2, n > 4, be a generic isometric immersion 

of a conformally //at manifold with nowhere//at  normal bundle such that the 

conullity £~ is integrable. Then f ( M  ~) is conformally congruent to a rotational 
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submanifold over a surface M 2 E ~4+ such that ( M  2, g) has constant curvature 

- 1 ,  where g is the metric induced from the hyperbolic metric of  constant sectional 

curvature - 1  on R 4 with the axis R 3 as the hyperplane at infinity. 

Corol lary 4 follows by pu t t ing  together  Corol lary 2 and the following result  of 

independent  interest.  

PROPOSITION 5: Let f:  M n -+ R N be a rotational submanifold over a subman- 

ifold ~: M n-q --+ R N-q.  Then M '~ is conformally fiat i f  and only i f  one of  the 

following possibilities holds: 

(i) n - q = 1. 

(ii) q = 1 and ( M n - l , g )  has constant sectional curvature K ,  where g is the 

metric induced by ~o from the hyperbolic metric of  constant curvature - 1  on 

R N-1  with the axis ~ N - 2  as the hyperplane at infinity. Moreover, K >_ - 1  

i f  n >_ 4 and N <_ 2 n -  3. 

(iii) q >_ 2, n > 4 and ( M  n-q, g) has constant sectional curvature -1. 

Theorem 1 and Propos i t ion  5 yield the following result. 

COROLLARY 6: Let  f :  M 3 --+ R 4 be a connected conformally fiat hypersurface 

with three distinct principal curvatures. Assume that the lines of  curvature of  one 

family are segments of  circles or straight lines in R 4 . Then f ( M  3) is conformally 

congruent to an open subset of  one of  the following: 

(i) a product M 2 × R,  where M 2 is a surface in ]~3 of constant Gaussian 

curvature,  

(ii) a cone C M  2 over a surface M 2 in S 3 of constant Gaussian curvature, 

(iii) a rotational hypersurface over a surface M 2 of  constant Gaussian curvature 

in R3+ endowed with the hyperbolic metric of  constant negative sectional 

curvature. 

Finally, we specialize to surfaces f :  M 2 -+ R N. For such an f notice t ha t  

admi t t ing  a principal  curvature  normal  is equivalent to having flat no rmal  bundle.  

In  this case, there are pointwise one or two principal  curvature  normals ,  the first 

case corresponding to an umbilical  point.  We have the following general izat ion 

of the classical classification of the Cyclides of Dupin  in R 3. 

COP~OLLARY 7: Let f:  M 2 -+ R N be an isometric immersion with fiat normal 

bundle and free of  umbilical points. Assume that the lines of  curvature of  one 

family are segments of  circles or straight lines in ]R N and that those of  the other 

family have constant geodesic curvature in M 2. Then f ( M  ~) is conformally 

congruent to an open subset of  one of  the following: 
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(i) a product 3 x R, where fl is a curve in R N-1 , 

(ii) a cone over a curve fl in the sphere S N-l ,  

(iii) a rotational surface over a curve 3 in R 1v-1 . 

If in the above result we assume the lines of curvature of both families to be 

segments of circles or straight lines in ]~N, then f must be conformally congruent 
to a Cyclide of Dupin in an affine R 3 C R N. For surfaces in R 3, it was shown 

by Bonnet in 1867 ([Bo]) that  the same conclusion of Corollary 7 holds under 

the weaker assumption that  the lines of curvature of both families have constant 

geodesic curvature. A more geometric proof of this result is due to Ribaucour 

([Ri]; see also IDa], Vol. III, p. 121). 

§2. T h e  proofs  

We first discuss the main ingredients in the proof of Theorem 1, which are also 

of independent interest. Although they are essentially known in the literature, 

we provide complete proofs for the sake of completeness and simplicity. The first 

one is Reckziegel's basic result referred to in the introduction. 

PROPOSITION 8: Let f:  M n ~ R N be an isometric immersion with a nonvan- 

ishing proper principal curvature normal ~ of  multiplicity q. Then the following 

holds: 

(i) £~ is a spherical distribution on M ~ whose leaves are q-dimensional round 

spheres in R N i f  and only i f  ~] is parallel in the normal connection o f f  along 

E,. 
(ii) I f  q >_ 2 then ~? is parallel in the normal connection of  f along £~. 

Proo f  (i) We write ~/ = A~, where ~ has unit length. Assume first that I / is  

parallel along C, in the normal connection. Choose S, T C £, ,  X E £~ and 

E T ~ M  such that ~ _l_ 7. We obtain that 

(1) (AI - A ¢ ) V T S  = (T, S)VA, and (A~VTS,  X )  = A(T,S)(V)~,~) 

by taking the S-component of the Codazzi equations for ( A ¢ , T , X )  and 

(A¢, T, X). By this we mean taking the inner product with S of both sides of the 

Codazzi equations VA((, T, X) = VA((, X, T) and VA(~, T, X) = VA(~, X, T). 

This terminology is used throughout the paper. 

It follows from (1) and E, -- A~eT/-M ker(A~ - (%~)I) that  V T S  C £~ for 
any orthogonal pair S, T. This implies that £ ,  is totally umbilical with mean 

curvature vector (f satisfying 

(2) (AI - A¢)5 = VA 
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A straightforward computation using (2) and the Codazzi equation for (A;, T, X) 

gives 

(4) (VTS, ( M  -- A¢)X)  = T ( ( M  - A¢)5, X )  - (5, V T ( M  - A¢)X)  = O. 

A similar computation using the Codazzi equation for (A¢, T, X) and (3) yields 

(5) (VT6, A~X)  = T(A~6, X )  - (5, V T A ~ X )  = (R±(T,  X ) ( ,  ¢) = O. 

We conclude from (4) and (5) that E v is spherical. Now, denoting by V the 

derivative in the ambient space, we have 

(6) ~ T S  = V ~ S  + (T, S}a, where a := 5 + ~]. 

Using VT~ ---- 0, we get that 

(7) V T a  = VT5 -- AuT = - I  al 2T. 

It follows by a standard argument that the leaves of E v are q-dimensional round 
spheres in R N. The converse is straightforward. 

(ii) The Codazzi equation for (A¢, T, S) gives 

T( ,k)=0 and [ S , T ] • k e r ( M - A ¢ ) ,  

whereas the Codazzi equation for (A¢, T, S) for ~ orthogonal to 7/yields 

V:~¢=0 and [S,T]•kerA~,  

and the proof follows. | 

For a given distribution/4 on M n, in the following two results we agree that 
S, T (respectively, X, Y) are vector fields on/4 (respectively, on/A±). Moreover, 
we denote by C the spli t t ing tensor  of/4 which assigns to each T • b/ the 
endomorphism CT of/4z given by C T X  = --Vhx T. 

LEMMA 9: Let Lt be a totally umbilical distribution on M n with mean curvature 

vector 5. Then the following differential equations hold: 

(8) ( V h C s ) X  = C s C T X  + C v ~ s X  - Rh(T,  X ) S  + (T, S) ((X, 5>5 - v h s ) ,  

(9) ( V h  CT)Y  - (Vh  C T ) X  = C v }  T Y  - Cvi, .TX -- R h ( x ,  Y ) T  - ([Z, Y], T>5. 
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Moreover, if  lg = £~ is the distribution associated to a proper principal curva- 

ture normal r] of an isometric immersion f: M '~ --+ R N, then (8) and (9) take, 

respectively, the form 

( V h C s ) X  = C s C T X  + C v } s X  + (T, S} (AnX + (a, X>~5 - v h 6 )  (10) 

and 

( n )  

Proof." 

( v ~ c c T ) y  - ( v ~ c r ) x  -- c v ~ T Y  - c v ~ x  - <[x, y],  T>~. 

The proof of (8) follows easily from 

( v ~ c ~ ) x  = - v ~ v ~ s  - c~v~ x = -V~ V x S + <T, V xS>~ - C~V~ X 

and 

VhTVxS = R h ( T , X ) S  + VhxVTS + V~T,x]S 

h h h V ~ x  s Vhv~S  =Rh(T, X ) S  + v h v ~ , S  + V X V T  S + V[T,X]vS ÷ 

=Rh(T, X ) S  - C v > s X  + Vh(T,  S>(~ ÷ ([T, X], S>6 

- CsV~ X - CsCTX. 

To prove (9), we first compute 

(V~CT)Y = - V ~ V ~ T  - C ~ V } Z  = - V ~ V y T  - CV~.TX + V ~ y T .  

Therefore, 

(Vh  CT)Y  -- ( V ~ C T ) X  = --Rh(X, Y ) T  - V~x,y]~T + CV~.TY - Cv}  TX,  

and the proof follows. 

Assume now that b/ = E v as in the statement. Then (10) and (11) are con- 

sequences of (8), (9) and the Gauss equations R ( T , X ) S  = -<T,S>AuX and 

R(X,  Y ) T  = A~s(y,T)X - Aas(X,T)Y = O. | 

The next result also follows from Nolker's in [No]. 

PROPOSITION 10: Let f: M n --+ R N be an isometric immersion with a non- 

vanishing proper principal curvature normal ~1 which carries an g-dimensional 

spherical distribution lg C £~ such that lg ± is totally geodesic in M ~. Then f is 

a rotational submanifold over an (n - g)-dimensional submanifold of R N- t .  

Prook Let ~ denote the mean curvature of gg. Since (6) and (7) hold, then the 

leaves of/-g are g-dimensional round spheres in R N . We claim that 

(12) V x a  = <X, ~5>a. 
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To prove the claim, first observe that the splitting tensor of/4 vanishes identically 

since/4 3- is totally geodesic. Then (10) yields 

(13) V x 5  = A , X  + (X, 5)5. 

The Codazzi equation for (A~, T, X) with ~ _L ~ = A~ implies that 

(14) (as(X, 5), ~) + ~ ( V ~ ,  ~) = 0, 

whereas the first equation in (1) for S -- T gives 

(15) X(A) = A(X, 5) - (AcX, 5). 

We obtain the claim by replacing (13), (14) and (15) in 

V x a  = X()~)( - )~AcX + ~V~:¢ + V x 5  + a I (X ,  5). 

Since/4± is totally geodesic, we have that  V x T  = ~TxT C/4. It follows using 

(6), (7) and (12) that  the subspaces L = /4  ® span{a} containing the leaves of/4 

are parallel in R N. Let F = f + I al -2a  be the submanifold generated by the 

centers of the leaves of/4. Using (12) we get F , X  --- X - I  al -2( X, 5)a. Since 

F,/4 ± is orthogonal to L, we conclude that f is a rotational submanifold whose 

axis is an affine subspace R N-~-I orthogonal to L. | 

We are now in position to prove our main result. 

Proof of Theorem 1: Throughout this proof we agree that T E E n and X, Y C 

C~. We have from Proposition 8 that E n is spherical with mean curvature 5. By 

assumption, there is a vector field fl C Ev such that  

(16) V~Y -- (X, Y)fl. 

Suppose that U is an open subset of M n where one of the following holds every- 

where: ( a ) / 3 = 0 = ~ ,  ( b ) / 3 = 0 ¢ ~ / ,  ( c ) / 3 ¢ 0 = ~ / , o r  ( d ) / 3 ~ 0 ~ 7 / .  
Assume first that either (a) or (b) holds. Then, it follows easily that each leaf 

of E~ is contained in an (N - q)-dimensional affine subspace orthogonal to Ev 

along the leaf. If ~l vanishes identically, then the leaves of ~v are q-dimensional 

parallel affine subspaces orthogonal to the affine subspaces containing the leaves 

of E~. Hence, f is as in part (i) of the statement when (a) holds. In case (b) we 

have that  f is as in part (iii) by Proposition 10. 

Assume now that/3 is nowhere zero in U and write/3 -- #T, where T has unit 

length. Suppose q _> 2 and consider the orthogonal splitting T M  = /4 @/4±, 

where 

/4± = span{T} @ E~. 
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We claim t h a t / 4  ± is totally geodesic and t h a t / 4  is spherical when y ¢ 0 and 

totally geodesic when ~ = 0. To prove the claim, first observe that (16) is 

equivalent to 

(17) CT = #(T, T)I. 

In the following, S and S ~ denote vector fields in/4. If q < n - 2, replacing (17) 

in (11) easily gives 

(18) (VxT ,  S )=O and X ( # ) = 0 ,  

whereas (18) holds by assumption for q -- n - 1. Moreover, we obtain from (10) 

that  

(19) <V~T, S) = 0. 

We conclude tha t /4  ± is totally geodesic from (16), (18), (19) and (VTX, S) = 

- ( s ,  7)(5, x )  = 0. 
Now, we have from (10) and (17) that  

(20) #(VsS' ,  T ) X  = -(S ,  S') (AnX + (5, X)5 - V ~ 6 ) .  

If q = 0, then 5 = 0 and C n is totally geodesic, hence also/4 is totally geodesic. 

If 7 /¢  0, it follows from (20) that we may write 

(21) (V sS', 7") = p(S, S') 

for some smooth function p, i.e.,/4 is totally umbilical. Suppose first that  q _> 3. 

Then dim/4 >_ 2 and, the leaves of E n being spheres in the ambient space, the 

same holds for the leaves of/4.  Since C n is spherical, it follows easily that  also 

/4 is spherical. To conclude the proof of the claim it remains to show that the 

integral curves of/4 are circles when q = 2. Set 5 = aW,  where a -- I 51 • Hence, 

T (a )  = 0 and v h w  = 0. It follows using (18) that 

(22) V s W = - a S  and V w S = 0 .  

To show that S(p) = 0, we use that #p = (A,TW, W) - W(a)  - a 2, as follows 

from (20). On one hand, we get 

(23) S(#) = S(VwW, T) = (VsVwW,  7-) = (VwVsW,  7-) + (V[s,w]W, 7-) = 0 

using (22) and (R(S, W)W, 7-) = 0. On the other hand, we easily obtain from 

(22) and the Codazzi equation for (An, S, W) that 

(24) S(AnW, W) = (VsAnW, W) = O. 



Vol. 125, 2001 TOTALLY UMBILICAL FOLIATION 213 

Since S ( W ( a ) )  = [S, W](a)  = 0 by (22), we conclude from (23) and (24) that  

S(p) = 0, as we wished. 

By the claim, i fT/= 0 then f ( U )  is a product M '~-q+l ×JR q-1 , where M "-q+l  C 

R N-q+l .  If r/ ¢ 0, the claim and Proposition 10 imply that  f is a rotational 

submanifold over a submanifold M '*-q+l c ]R N-q+l  with axis R g - q  C R g - q + l .  

In both cases notice that  M n-q+l is a leaf of L/±. 

We now make a detailed study of M n-q+~. Observe that  when q = 1, M '~-q+l 

= M '~. We have that  C~ is totally geodesic when 7} = 0. When 7/ ~ 0 and 

q _< n - 2, it follows from (18) that  = E~ is spherical. By assumption, this is 

also the case when q = n - 1. On the other hand, we have from (19) that  

V77-= 5 + v  :=~. 

If  ~] = 0, then also ~/= 0, hence the integral curves of T are segments of straight 

lines in R N-q+l .  When *l ¢ 0, it follows from VT'Y = - [  "~1 e T  that  they are 

arcs of circles in R N-q+1 . In both cases, we obtain using a l ( X ,  T )  = 0 that  T is 

parallel in the normal connection of a leaf of E~ in the ambient space. Moreover, 

it is an umbilical normal vector field with constant eigenvalue # along the leaf. 

We conclude that  each leaf of C~ lies in a (N - q)-dimensional sphere of radius 

#-1  orthogonal to 7- in R N-q+l  . Let $" denote the family of such spheres. Their 

centers are parametrized by 

(25) F : f ~- ~ t - l T .  

Differentiating (25) we get 

(26) F , T  = # -2Z ,  where Z = (#2 - 7-(#))7"+ #% 

On the other hand, we obtain from (10) for T = S = T that  

(27) (#2 _ T ( # ) ) X  = v h  5 -- (5, X} 5  - A n X .  

If  ~/ = 0 this implies that  Z = 0, that  is, P is a family of concentric spheres. 

Moreover, the straight lines containing the integral curves of T pass through 

their common center. We conclude that  M n-q+l C •N-q+l is the cone over a 

submanifold M '~-q of the sphere S g - q  C ]t( N-q+l ,  hence f is as in part  (ii) of 

the s tatement  in case (c). 

If  ~ ¢ 0, then (27) yields #2 _ T(#)  = W ( a )  - a 2 - A(AcW, W} ,  where A~ = ~l. 

Thus, 

(28) Z = ( W ( a )  - a 2 - A(A<W, W } ) T  + #% 
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On one hand, 

(29) T W ( a )  = [T, W](a )  = V T W ( a )  - V w T ( a )  = itW(a). 

On the other hand, taking the W component of the Codazzi equation for 

(A¢, W, 7") yields 

(30) T(AcW,  W) = #(A¢W, W) -/kit .  

Using (28), (29) and (30) we easily obtain that  V-rZ = itZ. Therefore, F 

parametrizes a straight line r. Moreover, comparing (20) and (27) we get p# = 

It2 _ T(#) ,  thus Z = #a,  where a = pT  + ~ + 71 is the mean curvature vector 

of the orbits of f ,  that  is, the leaves of /4.  Hence r is orthogonal to the axis 
•g-q C ]~Y-q+l. 

Observe that  r is contained in the plane of each circle C containing an inte- 

gral curve of T ,  hence such planes intersect along r. In particular, each plane 

intersects the axis ~N--q orthogonally along a line s. We show now that  s passes 

through the center O of C, that  is, O c R N-q. Let x be a point on C where T is 

parallel to R g-q.  Since the normal vector 7 to C at x is orthogonal to R N-q, all 

we need to show is that  the distance from x to ]~N--q equals the radius I 71 -1 of 

C. Since the mean curvature vector a = pT- + 7 of the orbits of f is everywhere 

orthogonal to R N-q, we must have p(x) = 0, hence, the distance from x to R y - q  

is I a ( x ) l - 1  = [71-1 ,  as we wished. 

For a fixed circle C containing an integral curve of 7-, we consider separately 

the cases where r and C: (i) intersect at two points P1, P2; (ii) are tangent at 

some point P; (iii) are disjoint. 

Suppose first that  (i) holds and consider an inversion I whose pole is, say,/: 'l- 

Then l ( r )  = r and I (C)  = t is a straight line through/~2 = 1(/:'2) E r. Since 

each sphere £ of ~- is orthogonal to C and r, we have that  I ( / : )  is orthogonal to 

I (C)  = t and I(r) = r, hence I(L:) is a sphere with center at 152 = tNr. Therefore, 

:~ = I(~-) is a family of concentric spheres with center 152. Consider now another 

integral circle C '  of 7". Since C'  is orthogonal to each element of $', we have that  

I(C')  is orthogonal to each sphere of 7 ,  hence I(C')  is a straight line through 

152. In particular, this implies that  C' intersects r at the same points P1,P2. 

We conclude that  I ( M  n-q+1) is contained in a cone C M  n-q, where M n-q is the 

image of a leaf of E~. 

Assume now that  (ii) holds and consider an inversion I with pole P.  Then 

I(r)  = r and I (C)  = t is a straight line parallel to r. Therefore, f i  = I(:F) is a 

family of parallel hyperplanes in ~g-q+l orthogonal to r. Given another integral 
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circle C'  of T,  we have that I(C')  must be a straight line parallel to r, since it 

is orthogonal to each hyperplane of ft. In particular, it follows that C' must be 

tangent to r at the same point P. Hence, I ( M  n-q+1) is contained in a product 
M n-q x R. 

Finally, assume that  (iii) holds. Let 7 /be  the hyperplane of N N-q+1 orthogonal 

to r through the center of C and let S N-q-1 be the sphere along which a fixed 

sphere S0 N-q of ~" intersects 7~. Consider an inversion whose pole is any point 

of S N-q-1. We have that  1(7/) = 7/ and I(g N-q) = N N-q is a hyperplane of 

R N-q+l which intersects 7/along 1R N-q-1 = I ( s N - q - 1 ) .  Since I(r)  and I(C) are 

circles orthogonal to I(7/) = 7 / and  to I(S N-q) = 1R N-q, both must be contained 

in planes orthogonal to N N - q - 1  and must have their centers at ]~N-q-1. Given 

another sphere S N-q of 3 c, we have that I(• N-q) is orthogonal to I(r) and 

I(C),  hence I(g N-q) is a hyperplane of R N-q+1 containing R N-q-1 . Therefore, 

~" = I(~-) is a family of hyperplanes in N N-q+1 intersecting along g{N-q-1 In 

particular, this implies that all spheres of ~- intersect along S N-q-1. Moreover, 

given another integral circle C' of T,  we have that I(C')  is orthogonal to any 

hyperplane of ~ ,  hence it is also a circle in a plane orthogonal to N N-q-1 with 

center at g{N-q-1. In particular, C' does not intersect r. Therefore, I ( M  n-q+1) 

is a rotational submanifold with one-dimensional orbits and ]~N-q-1 a s  axis. 

Now we determine I ( f (U) )  in each of the three cases above. In cases (i) or 

(ii), for each point Q c M n-q+x the image I ( l )  of the leaf l of £ ,  through Q 

is a q-dimensional subspace which intersects N N-q+l orthogonally along the line 

I(C).  It follows that I ( f (U) )  is contained in a product C M  n-q x R q-1 in case 

(i) or in a product M ~-q x R q in case (ii). 

Consider now case (iii). We have seen that the center O of any circle C 

containing an integral curve of T belongs to the axis ]~N-q of f .  Hence, the 

euclidean subspace containing the sphere S N-q-1 along which all spheres of ~" 

intersect is precisely the axis 1R N-q. Our aim is to show that g(U) = I ( f (U) )  is 

a rotational submanifold whose axis is R N - q - 1  = I ( S N - q - 1 ) .  First we prove the 

following general fact. 

LEMMA 11: Let h: M n -+ ]I~ N be a rotational submanifold with axis R N - q  over  

a submanifold M n-q+1 o fN N-q+l D R N-q and let I be an inversion whose pole 

is any point in the axis. Then I o h is also a rotational submanifold with the 

same axis over the image of M n-q+1 by I. 

Proof: The axis ~N- -q  is invariant under I.  Moreover, the subspaces N q con- 

taining the orbits of f are mapped onto spheres sq through the pole. Since each 
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subspace R q is orthogonal to R N-q,  the same holds for its image Sq. Hence, Sq 

has its center on R N-q.  Thus, the image I (S  q-l)  of each orbit S q-1 C ]~q of f 

lies on the intersection of Sq = I ( R  q) with the cone over S q-1 with vertex at the 

pole. Therefore, I (S  q-l)  is also a sphere with center on R N-q and contained in 

a subspace ]~q orthogonal to R N-q. II 

By Lemma 11, we have that  g(U) = I ( f ( U ) )  is a rotational submanifold over 

I ( M  Nn-q+l )  with the same axis R N-q C R N-q+1 as f .  Let e l , . . - , e N  be an 

orthonormal basis of R g such that  e l , . . . ,  eN-q+l span R N-q+1 and eN-q+l 

is orthogonal to the axis RN--q. Choose a coordinate system on ~N with re- 

spect to e l , . . .  ,eN with the origin in the axis R N-q.  Then, g can be described 

parametrically as 

(31) g = ( g l , . . - , g N - q , g N - q + l ¢ ) ,  

where gi = gi (xx , . . . ,Xn-q+l) ,  1 <_ i <_ N - q + 1, parametrizes the profile 

I ( M  '~-q+l) of g and ¢ ( Q , . . . ,  tq-1) the unit (q - 1)-dimensional sphere. On the 

other hand, we have seen that  I ( M  n-q+1) is itself a rotational submanifold with 

one-dimensional orbits with axis R N-q-1 .  In terms of the parametrization of 

I (Mn-q+l) ,  this means that  for some function ¢ we have that  

gi = gi (x l , . . . , x ,~-q) ,  l < i < N - q - 1 ,  

gN-q ---- ¢ ( x l , . . . , X n - q )  COSXn-q+l, gN-q+l ---- ¢ ( X l , . . . , X n - q )  SinXn-q+l. 

Therefore 9 -- ( g l , - . . ,  gN-q, ¢¢),  where 

$ ( t l , . . . ,  tq_l, x ,_q+l)  = (cos sin 

is a parametrizat ion of the unit q-dimensional sphere. We conclude that  g(U) is 

as in part  (iii). 

We now argue that  if there exists a non-empty open subset U C M '~ such 

that  U is an open subset of a product M n-q × R q, a product C M  n-q x R q- l ,  

a rotational submanifold over a submanifold M n-q of R N-q or the image by an 

inversion of an open subset of one of these submanifolds, then the same must hold 

for the entire submanifold M '~. In fact, in the first and third cases the leaves of 

£,7 are open subsets of parallel affine subspaces or spheres contained in parallel 

atone subspaces, respectively. In the other cases, let fl be given by (16). Then, 

the integral curves of/3 are arcs of straight lines through a common point in case 

(ii) and arcs of circles contained in planes which intersect along a straight line r 

in the remaining ones. Moreover, the circles either are all tangent at a common 
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point P C r, intersect along two fixed points P and Q of r or do not intersect r. 

On the other hand, the leaves of C¢ lie on (N - q)-dimensional spheres which are 

concentric in case (ii) and have their centers on a common line in the remaining 

ones. Furthermore, such spheres are either disjoint, are all tangent to a plane at 

a common point or intersect at a common (N - q - 1)-dimensional sphere. Since 

E~ is a globally defined distribution on M '~ by assumption, it follows easily that 

open subsets correspondent to any two of the above six possibilities cannot be 

glued together. 

Finally, the proof of the last statement follows from two elementary facts. One 

is that the normal curvature tensor of a submanifold is a conformal invariant; cf. 

[Ch]. The other one is that  a rotational submanifold has flat normal bundle if 

and only if the same holds for its generating submanifold; cf. [No]. | 

Proof of Corollary 2: The Codazzi equation yields 

{CTX, A~Y) ={~, (}<V xY, T} - {A~Y, VTX} 
(32) 

- {AeX, VTY} + T{A¢X, Y} - {Av#~X , Y}, 

for any T 6 $~, X, Y 6 C~ and { 6 T]-M. From the integrability of E~ it follows 
that CT is symmetric for any T E E~, and that the first term in the right hand 
side of (32) is symmetric in X and Y. Hence 

(33) - - 0  

Since ~ has dimension 2, at any point o f M  ~ either there exists To 6 C~ such that 

CT = <T, To}I for any T 6 C~ or there is T~ E g such that CT, (is symmetric 

and) has two distinct real eigenvalues. If the latter possibility holds at some 

point, then it also holds in an open neighborhood U. It follows from (33) that 

f has flat normal bundle on U, contradicting our assumption. Hence, the first 

possibility holds everywhere, which is equivalent to £~ being a totally umbilical 

distribution on M".  The conclusion now follows from Theorem 1. | 

Proof of Proposition 3: The Codazzi equation gives 

<Vx  x j ,  xk>( j - = <Vx,  - 

for all unit vectors Xi 6 £,, ,  Xj 6 En~ and Xk C C,k any i ~ j # k # i. In 

particular, C~ is integrable (regardless of the multiplicity of C~k) if rli -- r/k and 

r 5 - r/k are linearly independent for i # j # k # i. On the other hand, by 

Kulkarni's well-known criterion for conformal flatness, 

K(X1, X2) + K(Xa, X4) = K(X1, X3) + K(X2, X4) 
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for all orthonormal X1, X2, X3, )(4, where K(Xi,  Xj) denotes the sectional cur- 

vature of the plane spanned by Xi and Xj. For X1 E E m,)(2 C C~j and 

X3, X4 E E~k, we get that (~/~ - ~/k,~/j - ~/k) = 0 for any pair i ~ j with i , j  ~ k, 
and this concludes the proof. | 

Proof of Proposition 5: Consider the conformal diffeomorphism 

O: R ~ -~  H g - q  x S q c L N - q + 1  x R q+l  = L g + 2  

given in terms of a pseudo-orthonormal basis { e l , . . . ,  eN+2} of the standard flat 

Lorentzian space L N+2 with [ elf - - 0  = feN-q+1[, (el,eN-q+l> = --1/2 and 

(ei, ej> = 5ij if i ~ 1, N - q + 1, by 

N ( ) O ( a l , . . . , a N ) = ~  1, a l , . . . ,aN-q-1,  a j ,aN-q , . . . ,aN , 
j=l 

{K -~N a2~-1/2 where v = ~/-~j=N-q j /  . Let f be parametrized by 

• (x, t) = ( ~ l ( x ) , . . . ,  ~N-q- l (x) ,  ~N_q(x)¢(t)), 

where ~ = (~1 , - . . ,  ~N-q) and ¢ parametrizes the unit sphere S q C R a+l. Then, 

o kO: M n-q × S q -+ H N-q × S q satisfies 

0 0 9  = ( ~ o ~ )  x id, 

where (~: R N-q -+ H N-q C L N-q+1, defined as 

N-q  

( z (I)(xl , . . . ,  XN-q) = XNI_q 1, Xl , . - - ,  XN-q-1, 
i----1 

is an isometry between the half-space and hyperboloidal models of H N-q. Since 

O is conformal, the riemannian product (M n-q, g) x S q must be conformally fiat. 

The statement now follows from Proposition 2 of [La]. The restriction on K in 

part (ii) is due to the nonimmersibility of a space form Mm(K) into another 

space form Mm+p([~) when m > 3, K < k and p _ m - 2. | 

Proof of Corollary 6: Let el, e2, e3 denote the unit principal directions cor- 

respondent to the distinct principal curvatures )~1,)~2, z~3, respectively. It was 

shown by E. Cartan (see [La], p. 84) that conformal flatness is equivalent to the 

relations 

(34) (Ve, ej, ek> -- 0 
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and 

( 3 5 )  - + - + - = 0 ,  

for all dist inct  indices i, j ,  k. I t  follows f rom Codazzi ' s  equat ion and (34) tha t  

( 3 6 )  = - 

Assume for instance tha t  e3(A3) = 0. Then  equat ion  (35) yields 

hence the dis t r ibut ion spanned by el and e2 is umbilic in M 3 f rom (36). By  

Theorem 1, we have tha t  f ( M  3) is conformally  congruent  to an open subset  of 

one of the following: (i) a p roduc t  M 2 x R, where M 2 is a surface in R 3, (ii) 

a cone C M  2 over a surface M 2 C S 3, (iii) a ro ta t ional  hypersurface with axis 

N 2 C R 3 over a surface M 2 C R 3. I t  follows f rom Proposi t ions  1 and 2 of  [La] 

and Propos i t ion  5 t ha t  M 2 must  be as s ta ted.  | 

Remark 12: Corol lary 6 can also be derived f rom the results in [H-J] (cf. p. 328). 

The  special case of conformally  flat hypersurfaces  wi th  constant  mean  curvature  

and vanishing Gauss -Kroenecker  curvature  was also considered in [Fu], where 

they are shown to be cones over min imal  Clifford tori. 
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